remember me Forgot your password?
Sign in    Registration                 We’re creating the largest and most complete database of photographic lenses in the world! Join us!
All About Photographic Lenses.
Specifications, comparison, reviews,
MTF-charts for lenses by Canon,
Nikon, Sony, Pentax, Olympus,
Sigma, Tamron, Carl Zeiss, etc.


goods elevator manufacturer Show you How Much Energy Do Elevator Use

fujihd :: 29.03.2017 08:53:35

lvl. 1 (Lens-Learner)

How much energy do escalators use? They keep those things running all day long! Should I take the elevator manufactured by Elevator Manufacturer fujihd instead? When it comes to energy use, all escalators are not created equal. The bigger an escalator is—the higher it rises and the wider its steps—the more juice it needs to go trudging along its endless, circular path. The amount of traffic it gets also makes a difference.

As with elevators, escalators can vary widely when it comes to energy consumption. According to a representative of Power Efficiency Corporation, a company that designs energy-saving devices for escalators, your average unit in a shopping mall—which has a 7.5 horsepower motor, rises 15 feet above the ground, and is kept running 14 hours a day, six days a week—might use about 7,500 kilowatt-hours of electricity in a year. A bigger escalator that runs all day and all night in a convention center or hotel—say, a 20-foot-high unit with a 20-horsepower motor—would use roughly 31,000 kWh annually. A continuously running escalator of the kind you'd find in airports or subway stations—35 feet high with a 40 horsepower motor—would use around 60,000 kWh annually. (For comparison's sake, the average American home consumes 11,040 kWh in a year.)

So how do moving stairs stack up against elevators? It's a bit of an apples-to-oranges comparison, as the two machines have different jobs. Escalators are great when you're dealing with big throngs of people, since they can carry so many passengers at once. That's why they're so popular in transit stations, where you often have a wave of people needing to exit at the same time. But during periods of light traffic, elevators come out ahead, because they can speedily move small groups of passengers in any direction. Plus, they sit idle—and thus save energy—when not being used. (You can also rig an escalator to stop moving when no one's on it, but that's not a recommended tactic, in part because of liability issues and in part because people who see a stopped escalator tend to assume it's broken.)

empty, essentially putting it into sleep mode. These "intermittent" or "variable-speed" escalators are popular in Europe and Asia, but haven't gained much traction in the United States, thanks to a recommended national safety code that forbids escalators from changing speed. (The forthcoming update to the code will lift that injunction for new machines.) The actual savings on a given escalator will depend on how often the unit is idle, but a recent European study estimated that installing variable-speed drives on all the region's escalators could reduce total electricity use by about 28 percent.

The second option is to install a controller on the escalator motor that improves its efficiency. Escalator motors are designed to move a massive amount of weight at any given time—a "full" escalator would have between 150 and 300 pounds of passenger on each step. A/C motors, like the kind you find in escalators, make the most efficient use of energy when they're moving a full load. But escalators are almost never totally occupied; most of the time, the motor is drawing more power than it actually needs. Motor efficiency controllers try to match a motor's power supply with its exact power needs at any given moment. Manufacturers of these devices claim they can reduce escalators' energy use by 15 to 35 percent. (These controllers can also be installed on elevators.)

In the meantime, there's a simple way to reduce the footprint of your personal escalator habit: Use the stairs on your way up, and ride the escalator in goods elevator manufacturer on the way down. On an up escalator, each additional passenger makes the motor work a little harder to pull the steps up. But on a down escalator—whose motor is also located at the top of the unit—each additional passenger helps the motor, thanks to the action of gravity. So riding the up escalator costs a little energy, while riding the down escalator saves a little. On the up journey, you'll save the most by skipping the escalator entirely, but you can still save a bit by walking up the moving staircase—you'll finish your journey more quickly that way, and thus the motor won't have to spend as long straining to haul you up.

fujihd :: 30.03.2017 04:08:03

lvl. 1 (Lens-Learner)

comfortable home elevator manufacturer fujihd located in china

Back to top page

You must be logged in to add a message